报告摘要:
通用物体识别是视觉场景理解的基础核心任务之一,近年来得益于深度学习技术的发展和互联网大数据的繁荣,取得了显著的进步,当前主流方法在相对封闭场景的数据集上甚至超越了人类视觉系统的识别能力。面向真实场景实用化的需求,当前亟需解决的主要难题是开放场景下的大规模物体识别,其中涉及的主要挑战包括:海量物体类别间的复杂语义与视觉关联、开放场景中天然的长尾分布导致的标注数据稀缺、跨场景应用所面临的视觉识别模型推广与知识迁移等。报告将介绍本课题组近两年围绕开放场景识别所开展的一些初步探索,包括:属性与类别关联的多任务图像检索(CVPR’16/17)、属性辅助的零样本物体识别(ICCV’17/ECCV’18)、开放环境下的增量物体识别(BMVC’18)、场景推理驱动的物体检测(CVPR’18)等。相关工作的代码均已发布在了课题组主页上:
http://vipl.ict.ac.cn/resources/codes。
讲者简介:
王瑞平,博士,中科院计算所研究员,博士生导师。主要研究复杂真实场景下的图像视频目标识别与检索等问题。目前在领域主流国际期刊和会议发表论文60余篇(含CCF-A类论文24篇),Google Scholar引用2500余次,攻读博士期间获得IEEE CVPR2008“Best Student Poster Award Runner-up”奖励、2011年度中科院优秀博士学位论文奖等。担任IEEE Access、Pattern Recognition等国际期刊的编辑/客座编辑,国际会议IEEE WACV2018/2019领域主席,国际会议IEEE FG2018出版主席,国际会议ICB2019宣传主席。入选2012年度中科院计算所“百星计划”、2014年度微软亚洲研究院“铸星计划”、2015年度中科院青年创新促进会、2015年度“CCF-Intel青年学者提升计划”等。获得2015年度国家自然科学奖二等奖(第4完成人)。担任中国计算机学会计算机视觉专委会(CCF-CV)副秘书长。